European Clearing House for Open Robotics Development www.echord.info

UAVs for Close-Proximity Industrial Inspection

Overview Talk on TUAV and REMAV

Sammy Omari sammy.omari@skybotix.com

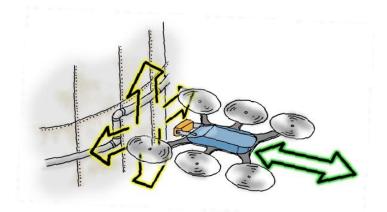
June 28th, 2013 Robotics: Science and Systems 2013, Berlin, Germany

Skybotix A few weeks ago, Seattle, USA

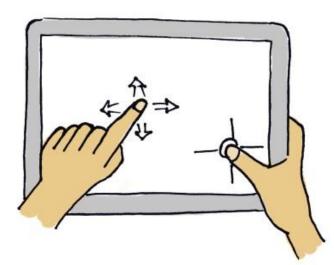
Dangerous & Tedious

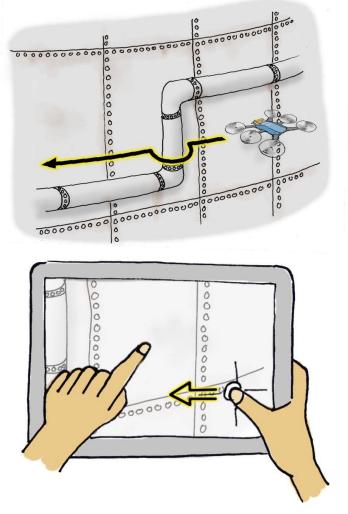
Skybotix Inspection required

Skybotix Inspection by UAV!



Huge Potential but not Mature yet Skybotix




User-Friendly and Fail-Safe UAV Inspection

Vision

Skybotix

Skybotix Flight-Stabilization Systems

Sensor Requirements

- Accurate relative localization
- Light-weight, low-power
- Indoor/Outdoor Functionality
- Metric measure of spatial surrounding

New Sensor Technologies

- Vision-based (OMNIWORKS, REMAV)
- Laser (TUAV)
- Visual-inertial (TUAV)

Courtesy of Hokuyo Ltd.

Goals

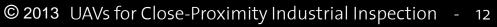
- Teleoperation of UAVs with haptic feedback
- Reactive obstacle avoidance

Sensor Technologies

- 2D laser-ranger scanner
- Visual-inertial stereo sensor

Partners

• I3S UNS-CNRS, Sophia-Antipolis, France



Courtesy of Novint

Courtesy of Hokuyo Ltd.

Results

- 2.5 D Laser-based teleoperation scheme implemented
 - Laser-based stabilization of UAV
 - Generation of obstacle map using laser-scanner
 - Reactive obstacle avoidance
 - Rendering of obstacle map on haptic joystick

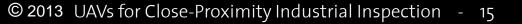
Current Work

• Extend current scheme to visual-inertial sensor to fully unstructured environments

Experimental Results: Laser-based Unilateral Teleoperation

Experimental Results: Laser-based Bilateral Teleoperation

Bilateral Haptic Teleoperation of VTOL UAVs


Video Recording of Experiments

Sammy Omari, Minh-Duc Hua, Guillaume Ducard, Tarek Hamel

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Skybotix REMAV: Remote Eye for MAVs

Goals

 Velocity-control and obstacle avoidance of UAV using FPGA-based vision sensor

Sensor Technology

- Monocular Optical-Flow FPGA-based Speed Sensor
- Now: Vision-based Line-Detector

Partners

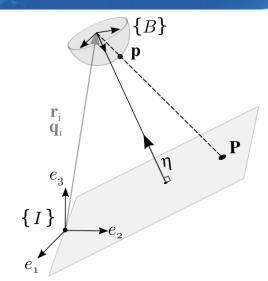
- Vissee, Zurich, CH
- Supsi, Lugano, CH

Courtesy of Apple Inc.

REMAV: Remote Eye for MAVs

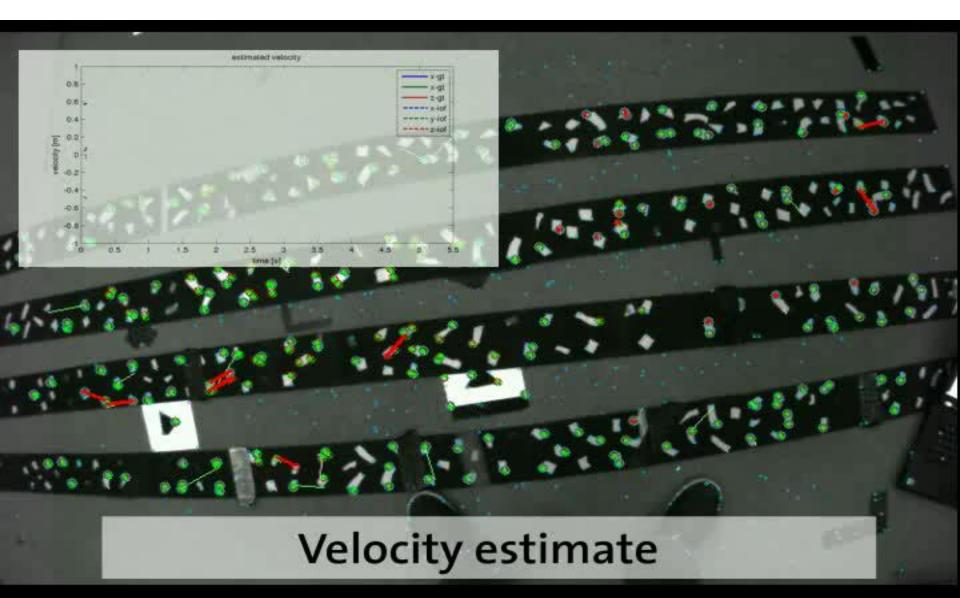
Results

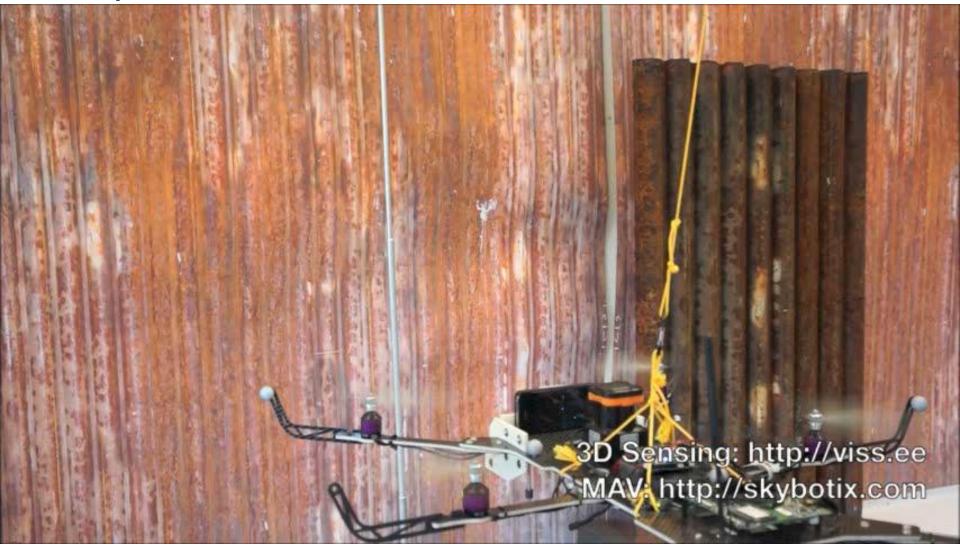
Skybotix


- Optical-Flow based pose estimation (with visual-inertial sensor...)
- Integration of line-detector on UAV

Current Work

• Evaluation of sensors in-flight




Skybotix REMAV: Remote Eye for MAVs

Experimental Results: Optical-Flow based pose estimation

Skybotix REMAV: Remote Eye for MAVs

Experimental Results: Line Detector

Skybotix Scientific Output

Book Chapters

• Bilateral Haptic Teleoperation of an Industrial Multirotor UAV,

S. Omari, M.D. Hua, G. Ducard, and T. Hamel Springer Tracts of Advanced Robotics (STAR), Technology transfer experiments from the ECHORD project, 2013 (to appear)

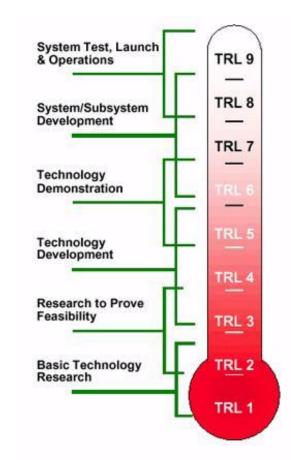
Journal Articles

 Hardware and Software Architecture for Nonlinear Control of Multirotor Helicopters, S. Omari, MD. Hua, G. Ducard and T. Hamel, IEEE/ASME Transactions on Mechatronics, Special Issue on Aerospace, 2013 (to appear)

Conference Papers

- Haptic Teleoperation of a VTOL UAV,
 S. Omari, MD. Hua, G. Ducard and T. Hamel,
 IEEE/RSJ International Conference on Robotics and Automation, Karlsruhe, 2013
 Metric Visual-Inertial Navigation System Using Single Optical Flow Feature,
- *S. Omari* and G. Ducard, European Control Conference, Zurich, 2013 (to appear)

Technological Readiness Level


TUAV

Skybotix

- Laser-based: TRL 7 Demo in operational environment (with limitations...)
- Stereo-sensor: TRL 5
 System validated in mock-up

REMAV

- Optical-Flow Sensor TRL 3
 Active R&D with first lab tests
- Line Sensor TRL 4
 Sensor Validation in lab environment

- Acquired significant knowhow in several sensor technologies
- Pros/Cons of sensors evaluated

Conclusions

Skybotix

• Follow-up project with stereo sensor?

