EFFIROB

Profitability analysis of new service robotic applications and their means for robotic development

ECHORD Workshop – IROS 2011

Kai Pfeiffer Fraunhofer IPA, Stuttgart, Germany

San Francisco, 30th September 2011

Outline

Introduction	 Motivation Objectives Approach Target markets and scenarios
Methods	 Systems Engineering (AD) Software Cost Estimation Life-Cycle-Costing LCC Market Structure Analysis
Scenarios	 Scenario Descriptions Example
Conclusion	 Economics, Market Potencial Safety Key Components
2 Introduction Methods Scenario	S Conclusion

Motivation

- German Ministry for Education and Research (BMBF) spend over 50 Mio. € for robotics research in the past years.
- Identification of industrial application scenarios for service robotics which are:
 - Already economically feasible \rightarrow motivate industrial cooperation
 - Close to feasibility \rightarrow fund projects to overcome borders
 - Not feasible \rightarrow identify blocking points and fund basic research
- Identification of key components and common parts in service robotic

Objectives of the Study

Overview: Approach and Methods

Scenario Development

Target markets and applications

Target market	Application				
Agriculture	Ground-crop harvesting				
5	Dairy cattle farming				
Energy and water supply	Grounds maintenance				
	Sewer inspection				
Logistics	Container transport in hospitals				
Manufacturing	Production assistance				
Facility management	Floor cleaning				
	Facade cleaning				
Construction industry	Interior fittings assistance				
Residential and nursing homes	Provisioning of care utensils				
	Lifting and moving of persons				

Axiomatic Design

Domains and rules

Axiom 1: Decoupling of functional requirements (from user's perspective)

- \rightarrow Decomposition und modularization FR_i \rightarrow DP_i
- Axiom 2: Minimization of information content of the design →Estimation of functional performance by proposed solution

Decomposition und modularization $FR_i \rightarrow DP_i$

Component catalog hardware (Example: Sensors)

Kriterium	Berührungsfrei messende Sensoren									
Technologie / Reflexion	Laser				Optisch	Ultraschall	Radar			
Dimensionen	1D	2D	2,5 / 3D	1D	2D	3D	1D	1D		
Detektion	Punkt- Abstand	Linienprofil	Linienprofile/ Flächenprofil	Abstand	ebenes Bild	räumliches Bild	Flächen- Abstand	Abstand, Ge- schwindigkeit		
typ. Erfassungs- bereich [m]	typisch < 15	< 80	< 200	< 10	5, abhängig von Optik	< 10	< 10	typisch: < 200		
Genauigkeit	< 1%	10-50 mm	< 100 mm	1%	abhängig von Optik	< 20 mm	3%	< 0,25 m		
Sicherheits- option	V	V	V	~			V	~		
Messrate (typisch)	< 1 kHz	< 0,1 kHz Scanfrequenz	50 Hz Scanfrequenz	< 1 KHz	<200 FPS	50 FPS	10 Hz	10		
Kosten [T€]	0,1 – 2	0,3 – 5	50	0,5 – 2	0,5 – 5	1 – 10	0,1 – 1			
Ausführungs- beispiel	Leuze LPS 36	Sick LMS 500	ibeo LUX 8L (Prototyp)	Balluff BOD 63M	Kappa Kalypso 023-USB	Mesa SwissRanger SR4000	Microsonic CRM +	ContiARS 3XX		

Introduction Methods Scenarios Conclusion

"Component catalog" of SR software

Proxy-based estimation using ROS stack list

	FUNCTIONS								
	interactive				internal				function points
ROS stack	Vavigation	Manipulation	Perception	Communication	Modeling	Janning	-earning		
arm_navigation		x				x			69
arm_planning_control		х				х			24
articulation	х	х			х	х			247
camera_drivers			х					х	134
camera_umd			х	х					37
collision_environment	х		х						71
common	х	х	х	х	х	х	х	х	310
common_msgs	х	х	х		х			Х	38
communication				х					12

ROS (Robot Operating System by Willow Garage) components used as reference

57 software stacks included in catalog

Function points: Quantitative measure of the functional extent of a software component

Function point counts in catalog were established by code analysis and "backfiring".

ISI

Cost estimation for software development

Introduction Methods Scenarios Conclusion

ISI

IPA

Profitability analysis

Why LCC-Analysis?

Scenarios

Conclusion

PROBLEM

- Classical multi periodic decision making instrument
- Bigger part of decision relevant costs incur after buy
- Cash flow and life cycle orientated consideration

BASIS FOR DECISION

- Absolute amount of LCC
- Amortization time
- Discounted Cash flow
- Cost per activity unit

Introduction

Methods

Scenario Ground-crop Harvester: Manual Solution

- 12 meter wide harvesting beam
- 12 harvesters
- 12 classifiers
- 3 packers
- 1 group leader

Scenario Ground-crop Harvester: SR concept

- 1 Packing unit
- 2 Robot on linear axis
- 3 Robot arm
- 4 Sensor for object detection
- 5 Gripper (fruit safe)
- 6 Cutting unit

Example: Szenario-Comparison

Ground-crop Harvester

Robust result

17

- Interesting in case of loan increase
- Complete use of market potential expected

Investment Installation costs Activity costs Mainenance, Service costs

Floor cleaning

- Even cheapest SR variant more expensive
- Potential just by reduction of investment (>50%) and better use of capacity
- Low market potential

Example: **Economics Analysis Result**

Estimation of market potential

Estimation of market potential Example: Ground-crop harvester

Identify basic population Estimation of funds available for SR Businesses TEUR p.a. Agriculture Total 41.085 investment Horticulture -58% Bottom-Up Technical 17.256 equipment Target market -75% Maximum 4.314 contingent for SR Realistic 4.314 contingent for SR 374.514 Market potential for SR Farms thereof horticulture 12.153 Sales p.a. 36 / 84 (@ T€ 704,1 / 310,2 per system with 6 SR) 2.021 thereof vegetables thereof in target market **Expected Installed Base** (main business, > 30 ha)180 / 420 316 (@ 5 years life span)

Service Robot Scenarios

	Estimates	Econor	nic feasibility	Estimated market potential in SR p.a. for Germany		
Scenario	Svv-costs/ Scenario [M€]	Based on LCC	Relevance of qualitative factors	Calculated maximum	Realistic exploit	
Grounds maintenance	1,5	(no)	high	391	39	
Provisioning of care utensils	6,8	(no)	high	5 - 10	2 - 5	
Lifting and moving of persons	5,0	no	high	6	0	
Ground-crop harvesting	0,9	high	low	36 - 84	36 - 84	
Floor cleaning	14,0	no	low	25 - 44	0	
Container transport in hospitals	3,3	high	high	40 - 60	40 - 60	
Facade cleaning	4,2	no	none	3	0	
Interior fittings assistance	4,3	high	high	5 - 6	5 – 6	
Sewer inspection	0,3	high	high	30 - 59	30 - 59	
Dairy cattle farming	4,4	high	high	62	62	
Production assistance	4,4	high	low	903 - 1 344	903 - 1 344	

Central Findings of the Study (Economics)

Summary

"Reduction of initial investment does not relevantly increase the economic feasibility of a service robot concept: "

- Generally < 25 % of LCC \rightarrow no/low relevance of economies of scale
- Higher leverage lies in activity and maintenance \rightarrow Reduction of complexity of use
- "A decision relevance of qualitative added value could not be observed at clear negative economics relations:"
 - Comparable cost positions absolutely necessary
 - Qualitative factors can not change negative economic relations
- "Good economic feasibility does not necessarily mean a high exploit of possible market potential:" 3
 - Exploit of market potential also limited by means of financing models
 - Some applications call for "new" business models

Critical Claim of the Approach (economics)

ADVANTAGES

- Holistic and dynamic examination of economic feasibility
- Mixed estimation of market potential
 - Bottom-Up estimation of potential for investment
 - Top-Down for narrowing down available volume (consideration of market structures and economics)

DISADVANTAGES

- Findings not always reflect real behavior of deciders ("Investment cost are after all relevant ")
- LCC considerations quite dependent on concrete scenario

Safety

Safety criteria:

- Spatial separation of machine and human
- Avoid shearing and crushing zones
- Safe navigation
- Safe manipulation
- Safe handling of big/heavy objects
- Protection against misuse
- Assurance of stability

Under consideration of:

- Actual and draft ISO Norms
- EU 2006 / 42 / EG

Under assessment criteria:

- Easy to solve
- Solvable
- Solvable under limitations

- Scenarios can be designed "safe"
- Expert knowledge partially necessary
- Sporadically demand for components

Evaluation of used Components and Technologies

- **Stable base of components** (at least as prototypes); Effects of former research projects are noticeable. **Demands:** High resolution 3D sensors, safety sensors, arm modules with higher payload, flexible grippers...
- **Safety-related design of service robots** based on existing/planed ISO-norms complex 5 but possible
 - **Extensive SW-costs:**

6

27

Introduction

Methods

- → Re-use, plan ability of SW-components:
 - SW-Paradigms (e.g. component based development, model driven engineering, ...)
 - Repositories for re-usable SW-components
 - Standards, guidelines for development and component integration
- → Methods for software cost estimation

Scenarios

(public) available methods, SW-Controlling know-how

Conclusion

Findings (technically)

- **Perception** central and most important basic technology in commercial service robotics. It is connected with other technologies.
- Robustness of key technologie navigation suppliers and end-users consider this a 8 central demand (high discrepancy between the rating of the level of maturity of robotic community and suppliers/end-users).
 - **Key functionality robust grasping** of spectrums of work pieces and every day objects
 - Efficient and safe human-robot-interaction improves user acceptance and efficiency \rightarrow Shared Autonomy.

Possible Impact on Academia-Industry Collaboration

- Academia: Tool to convince industry about economic feasibility of SR solutions
- 2 **Industry:** Tool to estimate costs for a SR development
- 3 **Consortia:** Methodology to state expected exploitation
 - **Reviewers:** Comparability of stated exploitations

Interaktiv Document with Software

EINE ANALYSE DER FRAUNHOFER-INSTITUTE IPA UND ISI IM AUFTRAG DES BMBF

Wirtschaftlichkeitsanalysen neuartiger Servicerobotik-Anwendungen und ihre Bedeutung für die Robotik-Entwicklung

- Download Study EFFIROB (ZIP, 30MB, 6MB)
- Download LCC-Tool (Excel) Download manual LCC-Tool (pdf)

http://www.ipa.fraunhofer.de/studien

EFFICIENT INNOVATIVE SERVICE-ROBOTICS | EFFIZIENTE INNOVATIVE SERVICEROBOTIK

English printed version planed for January 2011

